77 research outputs found

    Spin exchange-induced spin-orbit coupling in a superuid mixture

    Full text link
    We investigate the ground-state properties of a dual-species spin-1/2 Bose-Einstein condensate. One of the species is subjected to a pair of Raman laser beams that induces spin-orbit (SO) coupling, whereas the other species is not coupled to the Raman laser. In certain limits, analytical results can be obtained. It is clearly shown that, through the inter-species spin-exchange interaction, the second species also exhibits SO coupling. This mixture system displays a very rich phase diagram, with many of the phases not present in an SO coupled single-species condensate. Our work provides a new way of creating SO coupling in atomic quantum gases, and opens up a new avenue of research in SO coupled superfluid mixtures. From a practical point of view, the spin exchange-induced SO coupling may overcome the heating issue for certain atomic species when subjected to the Raman beams.Comment: 6 pages, 3 figures, accepted for publication as a Rapid Commun. in PR

    Detection and Genomic Characterization of a Morganella morganii Isolate From China That Produces NDM-5

    Get PDF
    The increasing prevalence and transmission of the carbapenem resistance gene blaNDM–5 has led to a severe threat to public health. So far, blaNDM–5 has been widely detected in various species of Enterobacterales and different hosts across various cities. However, there is no report on the blaNDM–5– harboring Morganella morganii. In January 2016, the first NDM-5-producing Morganella morganii L241 was found in a stool sample of a patient diagnosed as recurrence of liver cancer in China. Identification of the species was performed using 16S rRNA gene sequencing. Carbapenemase genes were identified through both PCR and sequencing. To investigate the characteristics and complete genome sequence of the blaNDM–5-harboring clinical isolate, antimicrobial susceptibility testing, S1 nuclease pulsed field gel electrophoresis, Southern blotting, transconjugation experiment, complete genome sequencing, and comparative genomic analysis were performed. M. morganii L241 was found to be resistant to broad-spectrum cephalosporins and carbapenems. The complete genome of L241 is made up from both a 3,850,444 bp circular chromosome and a 46,161 bp self-transmissible IncX3 plasmid encoding blaNDM–5, which shared a conserved genetic context of blaNDM–5 (ΔIS3000-ΔISAba125-IS5-blaNDM–5-ble-trpF-dsbC-IS26). BLASTn analysis showed that IncX3 plasmids harboring blaNDM genes have been found in 15 species among Enterobacterales from 13 different countries around the world thus far. In addition, comparative genomic analysis showed that M. morganii L241 exhibits a close relationship to M. morganii subsp. morganii KT with 107 SNPs. Our research demonstrated that IncX3 is a key element in the worldwide dissemination of blaNDM-5 among various species. Further research will be necessary to control and prevent the spread of such plasmids

    Aerial base stations with opportunistic links for next generation emergency communications

    Get PDF
    Rapidly deployable and reliable mission-critical communication networks are fundamental requirements to guarantee the successful operations of public safety officers during disaster recovery and crisis management preparedness. The ABSOLUTE project focused on designing, prototyping, and demonstrating a high-capacity IP mobile data network with low latency and large coverage suitable for many forms of multimedia delivery including public safety scenarios. The ABSOLUTE project combines aerial, terrestrial, and satellites communication networks for providing a robust standalone system able to deliver resilience communication systems. This article focuses on describing the main outcomes of the ABSOLUTE project in terms of network and system architecture, regulations, and implementation of aerial base stations, portable land mobile units, satellite backhauling, S-MIM satellite messaging, and multimode user equipments

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    Energy Efficient Topology Management for Next Generation Mobile Broadband Systems

    Get PDF
    This thesis examines how sleep modes can be used in next generation mobile broadband systems (BuNGee) to substantially improve energy efficiency. Such systems employ a high degree of overlapping small cells in order to deliver very high throughput density for 5G networks in dense areas. It is shown how by limited exchange of information between neighbouring base stations it is possible to maintain quality of service (QoS), over a range of traffic loads, while enabling inactive base stations to sleep. Dynamic distributed topology management schemes are used here to switch off the small cells at low traffic load levels, while the remaining local traffic can be forwarded by their adjacent cells. A novel analytical model is generated using multi-dimensional Markov processes and is used to predict the theoretical system performance and potential energy reduction when a set of parameters are varied. The parameters discussed include the traffic load thresholds to switch off/on a base station. This new model provides an understanding of how to obtain the maximum energy reduction while guaranteeing QoS by choosing suitable parameter values in such a network. Performance of distributed energy efficient topology management schemes with a sleep mechanism are compared against the system without topology management. Results show the schemes deliver a significant energy reduction in energy consumption in the network, which is 35%-70% depending on the strategies used. The corresponding simulation models are used to verify the analytical model. It is shown how traffic load based thresholds (used to switch on/off base stations) measured on adjacent base stations have a higher impact than the threshold on the base station itself. The latter threshold has very limited influence on the system energy efficiency. An energy efficient topology management scheme employing combined sleep modes with handover for a BuNGee system is investigated as a way of providing further improvements to energy efficiency. Performance is examined using both analytical and simulation based models. A key aspect of this scheme is that a base station can redeploy its traffic load to its neighbours and then switch off itself when the local traffic is at a low/medium level
    corecore